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SOLUTION OF THE HYPERBOLIC HEAT-CONDUCTION EQUATION
BY EXPANSION IN A SMALL PARAMETER

A. V. Finkel'shtein UDC 536.24.02

A method of finding the solution of the hyperbolic heat-conduction equation as a
power series of a small parameter (the relaxation time) is discussed.

In the hyperbolic heat~conduction equation [1]

aT 2T 0T (1)

Z y—_— =
ot or? Ox?
the relaxation time T, is small. For example in aluminum T, = 10™'® sec. Hence, one can

consider (1) as an equation of a small parameter € = T,/T, and use asymptotic methods for its
analysis and solution [2, 3].

We consider (1) (written in dimensionless form) for the following initial and boundary
conditions:

aT (x, 0)

T (x’ O) = 60 (X), (91‘

= 0, (%), (2)

OT(—DL D |

(— 1 BT ((— 11, ) =¢; (1), i=1, 2, (3)
Ox

51’1
where depending on the type of boundary condition, the comstants Bi,, Bj. are either equal to
zero or correspond to the appropriate thermal constants.

Because (1) has the .small parameter € as a coefficilent of the higher-order derivative,
a power series expansion of the solution in e must contain boundary~layer type terms depend-
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ing on the variable n = t/e [4]. We look for an approximate solution Tg(x, T) in the form

Te(x, )=To(x, ) +eTs(x, V) +eTo(x, D)+ ... +1y(x, ) +elly(x, )+ ... )

Substituting (4) into (1)-(3) and equating the coefficients of identical powers of ¢,
we obtain the following family of boundary-value problems:

02T, (5)

’

aT, — o
dt ax2

To(x, 0) = 8y (x) — 11 (x), I [Ty} = (1), @(7) = (91 (1), @, ()5

My _ g ®Tn  @Tas
ot Ox2 oz’ Ty (6)
Ty(x, 0)=0, I'[T,] =0;
o, | »l,
on + amz
(7)
Mo, 0) = mp(x), 2ol O _ 0;
on
L, | el 1T,
=F P k= .
om + an® ° o L2, '
M, =0, 20Dy, (8)
(8T, (x, O OTw s (x, O
hi(x)=91(x)—«’—-—9(%——l—, hh(x)=————k—3-(r"—L, E>o. (9)

where I' is the operator corresponding to the boundary conditions (3). The function mo(x) is
an arbitrary smooth function such that T'[me] = 0. Thus, the coefficients in expansion (4)
can be found if we can solve the boundary-value problems (5)~(8) subject to condition (9).

We assume that ¢i(7), @2(t) are differentiable the required number of times. The solution
of the boundary-value problem (5) is written in the form '

Ty (x, 7) = a(®) 91 () + b (%) 9 (%) + 4 (%, 7),

where a(x) and b(x) are smooth functions (linear for boundary conditions of types I and III)
which satisfy the relations

Bud’ (0) — Bpa(0) = 1, Pyyb'(0) —Byb (0) = 0,
Basd’ () + Boea () = 0, Boud’ (1) + Pob () = 1.

The function u(x, T7) satisfies the following equation with homogeneous boundary conditions:

du 0%
=F
7 0 TEE D, (10)
u{x, 0) = uy(x),
I'liu] =0,

F(x, ) = Fo (@' (x) 91 () + 8" () 9 (7)) —a(x) @] (v) — b (%) @, (v),
124 (x) = 0 (x) — 75, (%) — a(x) . (0) — b (x) P5 (0).
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The solution of (10) can be written in the form [5]

o T

u(x, t)= Z {un exp (—iAlt) -+ 5in (s) exp [— A2 (v — )] ds} Xa (%), 1)
0

n==1

where {23} and {Xp(x)} are the eigenvalues and eigenfunctions of the differential operator
8%/ ax? w1th homogeneous boundary conditions, and {up} and {f,(t)} are the Fourier coeffi-
cients of the functions ue(x) and F(x, T1):

i I
z%=fu“@Xﬂ@M,h@%:ﬁFu,ﬂXﬂ@M
.0 0

We assume that the initial conditions of (5) are such that one can calculate the re-
quired derivatives of T¢(x, T) by termwise differentiation of the series (11). Substituting
the expression for 3%7,/91% into (6) for k = 1, we obtain a boundary-value problem for T, x
(x, T). This problem is of the form (10) in which ue(x) = 0, F(x, 1) = 3%To/37%. Hence,
T.(x, T) can be calculated using (11). The higher-order functions T,(x, 1), Ta(x, 1),
are calculated recursively with the help of (11).

We consider in detail a type I boundary-value problem for the heat~conduction equation
(1). We take the case of homogeneous boundary conditions

TO, 9)=T(, 1)=10,

and we further put me(x) Z 0. The solution of (5) in this case is [6]

. ain \? . omn
To(x, T) = n2=1 ¢, €exp [—— (-—l—) Fo t| sin RS .
9 ¢ nn
ea = = 8 (® sin ——EdE.
Ly !

Differentiating (12) twice with respect to T and substituting the result into (6) for k = 1,
we find, solving the inhomogeneous equation

w ] \
Tifx, ) =—1 Ecn(ﬂ) Fo? exp [— (in—) ’ForJ sin My — 1 PTo . (13)
n=1 ! l l 012
Similarly it is straightforward to find Tp(x, 1), Ts(x, T):
03T, 12 4T,
Ty(x, V=2t —_

2 (X, ) 5% T 5

5T 3 (14)
Ty(x, T) = — b7 T, _._grz_a_l__i_ 2‘1‘3_
ott ot 6 ot

The form of (13), (14) shows that functions Ty(x, 1) for k 2> 1 can be sought in the form

B I
) O
Th= T, 0= (— 1 X A =,

i=1

(15)
where the Al(k) are found by the method of undetermined multipliers after substitution of
(15) into (6).

Recursion relations for the Ai(k+1) for some values of i are:

Bl (R . 1 , Bt 3
AP =240 AFTD = —Q-Aﬁh)+A‘2k’_;_3A‘3k’, o, A = —— A
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The above method of solving (6) based on (15) is useful not only for type I boundary condi-
tions but also for general boundary conditions given by the operator T when the functions on
the right-hand side ( ¢: and 2 ) are independent of Tt.

We now determine the coefficients of the singular part of the expansion (4). Solving
the boundary-value problem (7), we obtain

My (x) = 7 ()= 0. (16)

With the help of the method of variation of parameters, the solution of the boundary-value
problem (8) is written as

! PIT, 4 (x,
Hﬂnm:U—ﬂM4wmm+%jH—ﬂ“%mw-%%iiw.
0

an

From (17) it is straightforward to obtain

Iy (x, ) = [1— exp(— ] A (8), Mo (s, W) = [1— exp (— )] by (x) -+ Fo In—2+4 (n + 2 exp (— )} Ry (x), (18)

Hy{x, n)=1[1-—exp(— )] hy(x) +Foin—2+ (n 4+ 2) exp (— WA, (x) +

r ‘ ,nz

2
-+ Fo? t—g—~3n +6 — \7 4 3n + 6) exp (— n)] A{IVY (x)s

which shows that Iy (n, n) can be sought in the form

T, (x, M) = [1 —exp (— WA, (9 + Foln— 2+ (n+2exp (—h_, )+

v [P ane [ 3y 6) exp (— m) | AU (19)
H 2 2 / h—2

o+ FoP R (1B P L B G L CF) exp (— ),
and the coefficients Bgﬂh o, B?H cﬁih e, C$) are determined recursively in terms of the
corresponding coefficients with superscript (k — 1) using the method of undetermined multipli-
ers after substitution of (19) into (17).

Thus, for the case of boundary conditions given by the operator T with right-hand sides
independent of T, the functions Tyi(x, 1) and Ny(x, 1), k=1, 2, ..., are determined in terms of
derivatives of To(x, T). The series (4) together with (15), (16), and (19) represents a for-
mal expansion of the solution of the hyperbolic heat-conduction equation. Questions on the
convergence of this series require further study, but (4) with a finite number of terms can
serve as a good approximation to the exact solution of the hyperbolic equation.

As an example, we consider the transfer of heat in a semiinfinite medium when the heat
propagation speed is finite [1].

Equation- (1) (T4 = €) is to be solved subject to the boundary conditiens

B | T (x, Oy= 0T (x, O)fdv =0, T (0, 7)= L. (20)
The solution of (5) for this case is
9 x/(2 Vam)
To(x, T)=1— —/— exp (— s?) ds.
V=
0

Calculating 8%T,/9t? we find the function T,(x, 1) from (15). We than have the first approxi-

mation Tg:(x, T) to the solution of the hyperbolic heat-conduction equation (1) with boundary
conditions (20):

X8 3 X2 X2
Tey (2, ) =To(x, 7) + ‘5}7?;;;§F7_('§'_— ) €xp (—“ >'

dav 4av

Calculation of the derivatives of 83Tq/9t® and 9%To/9t“ allows us to obtain T,(x, T) and the
second approximation Tgp(x, T):
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Fig. 1. Comparison of the: ¢ dependence of the
solution T, of the parabolic heat-conduction
equation (curve 1), the exact solution of the
hyperbolic heat-conduction equation (curve 2),
the approximations T, (curve 3) and T¢., (curve
4) for different values of t. The solid curves
refer to T = 2e, the dashed curves to T = 5¢.
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We compare the approximations Tg.(x, T) and Tg2(x, t) with the exact solution of problem (1),
(20) given in [1]. Putting E=x/1 ae , we note that for £ > T/ we have T(x, ©) = 0. The
calculations show that for 7/e < 1 the functions Tg; and Te, poorly approximate the exact so-
lution the exact solution T. For 1/e = 1, £<C 1 the function T¢, more closely approximates
T, while the function Te, less closely approximates T in comparison with To,. For t/e =>10
differences in the functioms T, To, T.;, T., are small for all values of £. 1In Fig. 1, the
dependence of T, To, Tei, Te2 on & is shown for t/e = 2 and /¢ = 5.

Hence analysis of the approximation T, and Tg, show that in the calculation of the tem-
perature field in a semiinfinite medium, for T 2 e, £ < T/e the formulas obtained by the

small parameter method result in a good approximation to the exact solution of the hyperbolic
heat~conduction equation.

NOTATION

T, temperature; 1, time; x, coordinate; T,, time scale; q, thermal diffuxivity; 7,

N
layer thickness of the body; Fo=uary/i# , Fourier number; 7;N==22(§Ti+-§ﬂﬂ ; superscript k,

i=0

approximation number in the small parameter power series expansion.
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