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SOLUTION OF THE HYPERBOLIC HEAT-CONDUCTION EQUATION 

BY EXPANSION IN A SMALL PARAMETER 

A. V. Finkel'shtein UDC 536.24.02 

A method of finding the solution of the hyperbolic heat-conduction equation as a 
power series of a small parameter (the relaxation time) is discussed. 

In the hyperbolic heat-conduction equation [i] 

02T a2T ( 1 ) OT + ~ = a 

Ow a~ 2 ax 2 

the relaxation time T r is small. For example in aluminum ~r = 10-11 sec. Hence, one can 
consider (i) as an equation of a small parameter s = Tr/To and use asymptotic methods for its 
analysis and solution [2, 3]. 

We consider (i) (written in dimensionless form) for the following initial and boundary 
conditions: 

T(z, 0)=0o(X), aT(x, 0) --0,(x), (2) 

~ .  a T ( ( i - - D 4  ~) + ( _  1)~ ~ T  ((i - -1 )  Z, ~) = ~(~),  i =  1, 2. (3) 
ax 

where depending on the type of boundary condition, the constants ~iI, Bi2 are either equal to 
zero or correspond to the appropriate thermal constants. 

Because (i) has the small parameter c as a coefficient of the higher-order derivative, 
a power series expansion of the solution in e must contain boundary-layer type terms depend- 
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ing on the variable q = r/e [4]. We look for an approximate solution T~(x, z) in the form 

T~(x, ~) = To(x, ~) + eTi(x, ~) + eZT~(x, w) + . . .  + Ho (x, ~) + eHi(x, ~) + . . . (4) 

Substituting (4) into (1)-(3) and equating the coefficients of identical powers of c, 
we obtain the following family of boundary-value problems: 

aTo _-- Fo O~To (5 )  
a.~ Oxa ' 

To (x, 0) = Oo (x) - no (x),  r [Tol - -  ~ (~), ~ (~) = (~,  (~), w~ (~)); 

OT~ = Fo O~'T~ a~T~_i , le =-1 ,  2 . . . .  , 
a.~ Ox z o.~z 

Th(x, 0 ) = 0 ,  F [ T k ] = O ;  

OHo 0217o 
- - ~  - O, 

O~ O~ ~ 

/7o(X, 0) = Z~o(X), .OHo(x, 0) = 0 ;  
all 

__oIL~ -k --a2Hh = Fo O2H~-i , k =  l ,  2,  . . .  , 
0~1 O~] 2 ax  2 

(6) 

(7 )  

17h(x, O) = O, aH~(x ,  O) . =  hk(x) ,  (8 )  

!aTo(x ,  0) h h ( x ) =  a T k _ , ( x ,  0) k>2. (9 )  h~ (x) = 0x (x) a~ ' - -  a~ ' 

where ~ is the operator corresponding to the boundary conditions (3). The function To(x) is 
an arbitrary smooth function such that F[~o] = 0. Thus, the coefficients in expansion (4) 
can be found if we can solve the boundary-value problems (5)-(8) subject to condition (9). 

We assume that 91(~), ~2(~) are differentiable the required number of times. The solution 
of the boundary-value problem (5) is written in the form 

To (x, ~) = a (x) ~ (~) + b (x) ~ (~) + u (x, ~), 

where a(x) and b(x) are smooth functions (linear for boundary conditions of types I and III) 
which satisfy the relations 

~la' (0) -- ~a (0) = I, ~,,b'(0) -- ~,,b (0) = 0, 

[32ta' (/) -}- [3s~a (l) = 0, ~lb '  (l) -}- ~ b  (/) = 1. 

The function u(x, ~). satisfies the following equation with homogeneous boundary conditions: 

au a~u 
- - =  F o - - + F ( x ,  % 

O'~ Ox z 

u (x, 0) - -  Uo (x),  

f [ u ]  = 0, 

F (x, ~) = Vo (a, (x) ,~  ('0 + b" (x) ~ ('0) - -  a (x) ,r (~) - -  O (x) ~ ;  ( '0 ,  

uo (x) = Oo (x) - -  ~o (x) - -  a (x) ~ (o) - ~ (x) ~ (0). 

(i0) 
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The solution of (i0) can be written in the form [5] 

u (x, "~) = u,~ exp (-- [)~'~) q- f [~ (s) exp [-- ~ ('~ -- s)] ds} X~ (x), 
n = l  0 

(11) 

where {I~} and {Xn(x)} are the eigenvalues and eigenfunctions of the differential operator 
32/3xa with homogeneous boundary conditions, and {u n} and {fn(Z)} are the Fourier coeffi- 
cients of the functions Uo(X) and F(x, T): 

1 I 

u~ = ~ uo (x) Xn  (x) d~, f~ (~) = .[ F (x, ~) X~ (x) dx. 
0 0 

We a s s u m e  t h a t  t h e  i n i t i a l  c o n d i t i o n s  o f  (5)  a r e  s u c h  t h a t  one  can  c a l c u l a t e  t h e  r e -  
q u i r e d  derivatives of To(x, z) by termwise differentiation of the series (ii). Substituting 
the expression for 3aTo/ST a into (6) for k = I, we obtain a boundary-value problem for TI• 
(x, z). This problem is of the form (I0) in which uo(x) = 0, F(x, T) = 32To/3T = Hence, 
T1(x, T) can be calculated using (ii). The higher-order functions T2(x, r), T3(x, z), ... 
are calculated recursively with the help of (ii). 

We consider in detail a type I boundary-value problem for the heat-conduction equation 
(i). We take the case of homogeneous boundary conditions 

T(O,  ~) = T ( I ,  ~) = O, 

and we f u r t h e r  p u t  ~o(X)  ~ 0. The s o l u t i o n  o f  (5)  i n  t h i s  c a s e  i s  [6]  

To (x, "~)= c,~ exp - -  Fo "~ sin - - / - x ,  
n = l  (12) 

2 t z~n 
c ,  = ~ - !  O0 (~) sin "-7-~d~. 

Differentiating (12) twice with respect to T and substituting the result into (6) for k = i, 
we find, solving the inhomogeneous equation 

T , ( x ,  " 0 = - - ' r  c,~ Fo2exp - -  'Fo1: sin x = - - ' ~ - -  (13)  
~= 1 l aT2 

Similarly it is straightforward to find Ta(x, T), T3(x, ~): 

T~ (x, x)-= 2"~ 03T~ q- ,~2 OTo 
0"~ 8 2 Ov ~ 

0x~ & 5  

xa 06To 

6 &6 

(14) 

The form of (13), (14) shows that functions Tk(X , T) for k~l can be sought in the form 

h 8k+~ (i 5) 
r k  = CkTo, ~k  " =  ( - -  1) a Z A~h)'6 

i=I 0%h+t ' 

where the Ai(k) are found by the method of undetermined multipliers after substitution of 
(15) into (6). 

Recursion relations for the Ai (k+1) for some values of i are: 

AI ~+I) = 2A~ h~, A~ h+l~ = - -  Ik)-k A~ h~ q- o~3 , . . .  , ~ A~ ~.  
2 l e 4 - i  
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The above method of solving (6) based on (15) is useful not only for type I boundary condi- 
tions but also for general boundary conditions given by the operator F when the functions on 
the right-hand side ( ~i andS2,) are independent of ~. 

We now determine the coefficients of the singular part of the expansion (4). Solving 
the boundary-value problem (7), we obtain 

I7o (x) = ao (x) ---- O, (16) 

With the help of the method of variation of parameters, the solution of the boundary-value 
problem (8) is written as 

n ~Hh_~(x ,  s) ds. (1~) ~ ( x ,  ~) = [1 - -  exp ( - -  ~)l h~ (x) + F o  .~ [ 1 - - e x p  ( s - -  ~)1 
Ox z o 

From (17) it is straightforward to obtain 

~7~ (.~, ~]) = [1 --- exp ( - -  ~)] h~ (z), fI2 (x, ~]) = [1 - -  exp (- -  q)] h2 (x) q- Fo [~ - -  2 q- (~ + 2) exp ( - -  ~)] h'~ (x), (18)  

/7~ (x, ~1) = [1 --- exp (-- q)] h a (x) 

-+- Fo 2 -- 3~1 -6 6 -- 
2 

+ Fo[a]---2 + (q q- 2) exp (- -  q) lh;  (x) + 

~]2 , 3~1 + 6 ) e x p  ] h ~ V ) ( x ) ,  - y -  -~- (--  n) 

which shows that ~k(n, n) can be sought in the form 

/Th (x, ~) ---- [1 - -  exp (--  n)] hh (x) q- Fo [~1 - -  2 § (n q- 2) exp (- -  ~])1 h~_~ (x) ,+ 

. [ ,, 0 _  + <, exp 

t O ( h )  ~ h - - 1  ... + Fo ~-' h12~- ~) (x) IB2~)ln"-~ + . . .  + Bg h) + ~ h - , ,  + . . . - ~  C(0 ~)) e x p  (--  ~1)], 

and t h e  c o e f f i c i e n t s  B(k~,  . . .  , B(o h), C ~ ,  . .  , C(o ~) a r e  d e t e r m i n e d  r e c u r s i v e l y  i n  t e r m s  o f  t h e  
corresponding coefficients with superscript (k -- i) using the method of undetermined multipli- 
ers after substitution of (19) into (17). 

Thus, for the case of boundary conditions given by the operator F with right-hand sides 
independent of ~, the functions Tk(x , ~) and ~k(X, z), k=l, 2, ~ are determinedinterms of 
derivatives of To(x, z). The series (4) together with (15), (16), and (19) represents a for- 
mal expansion of the solution of the hyperbolic heat-conduction equation. Questions on the 
convergence of this series require further study, but (4) with a finite number of terms can 
serve as a good approximation to the exact solution of the hyperbolic equation. 

As an example, we consider the transfer of heat in a semiinfinite medium when the heat 
propagation speed is finite [i]. 

Equation-(1) (Tr:= e) is to be solved subject to the boundary conditions 
> .  : : 5_ :77  

r(x, O)~--~OT(x, O)[OT=-O, T(0,  ~ ) =  I. (20) 

The solution of (5) for this case is 

x/(2 F~ 

2 [ e x p ( - - s  z) ds. To (x, "~)= 1 g ~  
L/  

0 

Calculating 3aTo/az a we find the function T1(x, z) from (15). We than have the first approxi- 
mation TEI(x , ~) to the solution of the hyperbolic heat-conduction equation (i) with boundary 
conditions (20): 

X8 X) (X2) 
- exp T~t(x,  ' ~ )=To(x ,  "~)+ 2]/-~-.~3/2 2 4a~ 4a'~ 

Calculation of the derivatives of 3aTo/aT a and 3"To/az 4 allows us to obtain Ta(x, T) and the 
second approximation Tea (x, T) : 
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Fig. i. Comparison of the c dependence of the 
solution To of the parabolic heat-conduction 
equation (curve i), the exact solution of the 
hyperbolic heat-conduction equation (curve 2), 
the approximations TE~ (curve 3) and Te2 (curve 
4) for different values of T. The solid curves 
refer to �9 = 2e, the dashed curves to r = 5e. 

xe 3 x~ exp -- 
T~(x ,  z) = To(X, z) -c 2 V - ~ , (  ~/~ 2 4a'~ 4a~ 

+ 2V~ 5/~ 4--~--~7 --2 + 5 exp ---- . �9 \ 4a~ ] 4a~  8 4a~ 

We compare  t h e  a p p r o x i m a t i o n s  T c , ( x ,  T) and Tr  ~) w i t h  t h e  e x a c t  s o l u t i o n  o f  p r o b l e m  ( 1 ) ,  
(20) g i v e n  i n  [ 1 ] .  P u t t i n g  ~ = ~ a - e - ,  we n o t e  t h a t  f o r  ~ > T/~ we have  T (x ,  ~) = 0. The 
c a l c u l a t i o n s  show t h a t  f o r  T/r  < 1 t h e  f u n c t i o n s  Te ,  and Tr p o o r l y  a p p r o x i m a t e  t h e  e x a c t  s o -  
l u t i o n  t h e  e x a c t  s o l u t i o n  T. For  z / c  = 1, < ~  1 t h e  f u n c t i o n  Tr more  c l o s e l y  a p p r o x i m a t e s  
T, w h i l e  t h e  f u n c t i o n  Te~ l e s s  c l o s e l y  a p p r o x i m a t e s  T in  c o m p a r i s o n  w i t h  To. For ~/E ~ 1 0  
d i f f e r e n c e s  i n  t h e  f u n c t i o n s  T, To, T e l ,  Tr a r e  s m a l l  f o r  a l l  v a l u e s  of  ~. In  F i g .  1, t h e  
d e p e n d e n c e  of  T, To, Tr Te2 on ~ i s  s h o ~  f o r  T/e  = 2 and ~ / c  = 5. 

Hence a n a l y s i s  o f  t h e  a p p r o x i m a t i o n  Tez and Te2 show t h a t  i n  t h e  c a l c u l a t i o n  o f  t h e  t em-  
p e r a t u r e  f i e l d  in  a s e m i i n f i n i t e  medium, f o r  T ~ r  ~ < T/E t h e  f o r m u l a s  o b t a i n e d  by t h e  
s m a l l  p a r a m e t e r  method  r e s u l t  i n  a good a p p r o x i m a t i o n  to  t h e  e x a c t  s o l u t i o n  o f  t h e  h y p e r b o l i c  
h e a t - c o n d u c t i o n  e q u a t i o n .  

NOTATION 

T, temperature; r, time; x, coordinate; ~o, time scale; a, thermal diffuxivity; l, 

N 

layer thickness of the body; Fo=a~0//"~ , Fourier number; T~N=~(dT~+elfIi) ; superscript k, 
i=0 

approximation number in the small parameter power series expansion. 

1. 

2. 

3. 

4. 

5. 
6. 
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